

Redefining Security

QUANTUM-SAFE SECURITY WHITE PAPER

Quantis QRNG chips physical model and test results

Origin of quantum randomness and their security

Version 1.1 March 2020

> **ID QUANTIQUE SA** Chemin de la Marbrerie 3

1227 Carouge/Geneva Switzerland T +41 22 301 83 71 F +41 22 301 89 79 info@dquantique.com www.idquantique.com

Copyright © 2020 ID Quantique SA. Printed in Switzerland.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means – electronic, mechanical, photocopying, recording or otherwise – without the permission of ID Quantique.

Trademarks and trade names may be used in this document to refer to either the entities claiming the marks and names or their products.

ID Quantique SA disclaims any proprietary interest in the trademarks and trade names other than its own

Table of contents

1.	Introduction	. 4
2.	Physical principle for entropy generation in IDQ's QRNG chips	4
3.	Entropy estimation for QRNG chips	8
4.	Test Results	10
4.1.	NIST SP 800-90B IID test result for quantum noise datasets	10
4.2.	NIST SP 800-90B non-IID test result for quantum noise datasets	11
4.3.	NIST SP 800-22 sts-2.1.2 randomness test result for an RNG dataset from an IDQ6MC1 chip	11
4.4.	Dieharder v.3.31.1 randomness test result for an RNG dataset from an IDQ6MC1 chip	12
5.	Conclusion	14

1227 Carouge/Geneva Switzerland

1. Introduction

The most crucial feature of a random number generator in cryptographic use is its ability to generate random numbers that are fundamentally unpredictable. To assess the "level of unpredictability" (also called the "amount of entropy"), a clear physical model with no hidden assumptions about the inner workings of the device is necessary. IDQ's QRNG chips generate "entropy" directly from a quantum process that is provably random and unpredictable, and their inner working is simple enough to be succinctly laid out. This quality is at the root of their security.

2. Physical principle for entropy generation in IDQ's QRNG chips

In order to get high quality of entropy, IDQ's patented quantum random number generator (QRNG) chips exploit the fact the number of photons emitted by a common light source fluctuates randomly. These fluctuations, also called "quantum shot noise", are purely of a quantum origin, and are therefore fundamentally random as per the laws of physics: an array of single-photon sensitive pixels is illuminated for a short time during which each pixel receives a random number of incident photons

Figure 1: Poisson distribution with a mean value of 512 photons.

that follows the statistics of a *Poisson* distribution. *Figure 1* shows the Poisson distribution with a mean value of 512 as an example. Note that a particular feature of the Poisson distribution is that its mean is equal to its variance.

ID QUANTIQUE SA Chemin de la Marbrerie 3 1227 Carouge/Geneva Switzerland

The structure of all IDQ QRNG chips is shown on *Figure 2*: a light emitting diode (LED) and a CMOS image sensor (CIS) pixel array are respectively integrated inside a QRNG chip as a light source and a multipixel single-photon detector. All pixel outputs are digitized by a single analog-digital converter (ADC). Based on these ADC output values, the number of detected photons per pixel, as well as their fluctuations, can be measured. Essentially, the quantum shot noise is directly converted into numbers at the output of the ADC. The passage from quantum randomness to an actual random number is straightforward and by no mean affected by other unaccounted (and possibly contriving) physical processes that could increase predictability and thwart security.

Figure 3 - Internal structure of the QRNG chips. The NRBG core implements the DRBG mechanism.

ID QUANTIQUE SA Chemin de la Marbrerie 3 1227 Carouge/Geneva Switzerland T +41 22 301 83 71 F +41 22 301 89 79 info@dquantique.com 5

Note that the principle of operation and internal structure as described in *Figure 3* is the same for all IDQ QRNG chips, but each IDQ's QRNG chip has an implementation that slightly differ from one another. For example, each IDQ QRNG chip model has a specific CIS resolution (number pixels), number of LEDs used, and resolution of the ADC. Moreover, the hash based DRBG is embedded only in IDQ6MC1 and IDQ20MC1 chips.

In practice, an auto-calibration function controls the optical power supplied by the LED as well as the exposure time of the CIS. This sets the average of the ADC output in a good range to ensure highest entropy. It is in particular important that all pixels are not underexposed or saturated, to avoid pixel outputs become predictable. Environmental and operating conditions fluctuations (e.g. temperature, voltage or current), can affect the optical power. Fortunately, the auto-calibration of the power keeps the entropy maximal even in their presence. A health check function inside IDQ QRNG chips is always monitoring the brightness level. If it is too high or too low beyond the max and min thresholds, then the health check function makes a notice of this event to internal functions and to external user, the auto-calibration will start to re-calibrate for setting the brightness level again into the normal range. Note that if there is any failure on operation of analogue components like LED and CIS, beside the brightness, the health check function will also notice the failure to users.

In addition, and importantly, the digitized output of each pixel is sampled to keep only two bits, for example, the 3rd and the 4th bits out of the 10-bit ADC, in case of IDQ6MC1 and IDQ20MC1. The set of sample alphabets consists of 00 (or "0"), 01 (or "1"), 10 (or "2"), 11 (or "3"). This process, as well as the randomness extraction (deterministic random bit generation, DRBG) performed after the sampling, is represented on *Figure 4*. The whole process is compliant to the NIST SP 800-90A/B/C recommendations.

1227 Carouge/Geneva Switzerland

White Paper

Figure 4 - Visual representation of a digitized frame captured on the CIS, to the entropy bits generated by sampling the ADC output, then to the random bit (RNG data) produced after the randomness extractor (DRBG) that is onboard of the chips. The randomness extractor reduces the number of bits generated, but it also provides numbers that have an added layer of cryptographic security that can be necessary for certification. The whole process is designed based on the NIST SP800-90C's Enhanced NRBG – Oversampling Construction.

The analysis of the entropy generated from this process will depend on the mean number of photons detected. Thanks to the robust design and the sampling, the entropy of the two-bit strings produced does not depend on the optical power very much. *Figure 5* shows that in the ideal case, if the mean value of each pixel's ADC output remains around between ~100 to ~900, the 2-bit entropy sample from each pixel can have the maximal min-entropy value, $H_{min} = -log_2 P_{max} = 2$. Note that the min-entropy is a good entropy measure for cryptographical use because it gives lower (i.e. more conservative) estimation than other entropy measures such as the Shannon entropy, the Collision entropy and so on.

Figure 5 - Minimum entropy (H_min) of each 2-bit sequence generated by a pixel, as a function of the digitized mean number of photons captured by the pixel. Even though the mean value of each pixel is different due to various reasons, each pixel's 2-bit sample sequence equally has the maximum min-entropy.

ID QUANTIQUE SA Chemin de la Marbrerie 3 1227 Carouge/Geneva Switzerland T +41 22 301 83 71 F +41 22 301 89 79 info@dquantique.com 7

3. Entropy estimation for QRNG chips

Figure 6 shows the probabilities of each 2-bit sequence obtained from a QRNG chip (IDQ6MC1) containing a CIS pixel array of 128x100 resolution. Considering the geometrical positions of pixels and of the light source in the QRNG chip, 4 corner pixels at (x,y) coordinates (0,0), (0,99), (127,0) and (127,99), are chosen to gather raw digitized datasets. These are good candidates to see extreme statistics. In this instance, (0,0) and (127,99) pixels respectively give the lowest and highest means. In all of the four pixels, the mean and the variance values are high enough and are essentially equal (within the uncertainty of their estimation). In other words, the Poisson distribution property that "mean = variance" is satisfied, as shown on *Figure 6*. Also, there is no under or overexposure. The distribution of all other pixels is in between the extreme values shown in Figure 6. The conditions necessary to generate a maximal entropy are therefore satisfied. Note that the following statistics are calculated based on 20,000 pixel output values. Considering that IDQ6MC1 runs in the frame rate of 241 fps, it takes about 83 seconds to gather such number of values. However, the statistics still satisfies the Poissonian property and this implies that the optical power's variation and instability could be negligible, since they make the variance bigger.

	(0,0)	(0,99)	(127,0)	(127,99)
Mean	372.6283	420.1958	430.6277	463.6176
Variance	368.4144	406.6577	413.6829	461.0258

Figure 6 - Distribution of the digitized pixels outputs under illumination.

ID QUANTIQUE SA Chemin de la Marbrerie 3 1227 Carouge/Geneva Switzerland

After the sampling is applied, the 2-bit quantum entropy samples from each of the pixels in consideration have good uniformity and entropy results shown on *Figure 7* and *Figure 8*. The occurrence probabilities of 4 2-bit sample values, 00(0), 01(1), 10(2), and 11(3), are unbiased and around 25%. The minimum entropy scores are around 1.97 which nears the theoretical limitation per 2-bit sample. Note that the min-entropy of 1.97 is calculated based on 20,000 samples only. When we compute the entropy using a larger dataset, for example, 10 million samples or more, the entropy score gets much closer to 2.

Figure 7 - Probability to obtain each 2-bit sequence for each of the 4 pixels in consideration.

Figure 8 - Direct estimation of the min-entropy (H_min) of each of the 4 pixels in consideration.

Figure 9 shows how much classical noise can be added in the pixel outputs, which includes all classical noises from the electronics. In order to measure them, we turned off the LED, disabled the black level compensation (BLC) function of CIS and minimized the offset level of the ADC. It is usually hard to see the classical noises, because the values of classical noises mostly are 0s and rarely 1, 2 or 3 in normal operation. The variance of them remains around 12 to 14, that is, the standard deviation

ID QUANTIQUE SA Chemin de la Marbrerie 3 1227 Carouge/Geneva Switzerland T +41 22 301 83 71 F +41 22 301 89 79 info@dquantique.com 9

is under 4. It is unlikely that classical noises make random transitions at the 3rd and 4th bits. To minimize the effect of classical noise and make quantum noise dominant, only the 3rd and 4th bits are used as they are not impacted by the fluctuation of classical noise.

Figure 9 - Distribution of the digitized pixel outputs without illumination

Note that if necessary, it is also possible to significantly reduce the above classical variance by enlarging the input voltage range of the ADC, while making the ADC less sensitive to small voltage difference. Of course, this action will reduce the quantum variance by light source as well. However, as shown in *Figure 6*, the quantum variance is sufficiently big so that we can maintain the entropy of the 3rd and 4th bits as they are by adjusting the input voltage range at an adequate level. Of course, the auto-calibration will also make the quantum variance, that is, the quantum entropy bigger again.

4. Test Results

4.1. NIST SP 800-90B IID test result for quantum noise datasets

This NIST IID entropy test runs the permutation test, the Chi-square (independence and goodness-offit) test and the longest repeated sequence test, in order to check if the entropy source really generates independent and identically distributed sequences. By design, all the tests respectively

have some normal failure rates of around 2.25%, 0.2% and 0.1%. As shown in the following table, IDQ QRNG chipsets pass the IID tests with normal failures.

Entropy source	Q/T	Conditioning	Permutation Fails	Chi-square Fails	LRS Fails
IDQ250C2	Q	No	4/175 (2.28%)	0/175 (0.00%)	0
IDQ6MC1	Q	No	53/2400 (2.22%)	18/2400 (0.75%)	0
IDQ20MC1	Q	No	15/576 (2.60%)	0/576 (0.00%)	0

4.2. NIST SP 800-90B non-IID test result for quantum noise datasets

The NIST non-IID test is for estimating the min-entropy in a conservative way, without applying any statistical assumption on the entropy source outputs. In the test suite, 10 estimators provide the estimated min-entropy per sample with 99% confidentiality and finally the minimum of the 10 scores is picked up. Note that to get a reliable test result, the size of datasets should be at least 10MB.

Entropy source	Q/T/P	Conditioning	# of tests	Non-IID Entropy (per byte)
IDQ250C2	Q	No	175	7.4648
IDQ6MC1	Q	No	52	7.4135
IDQ20MC1	Q	No	1000	7.4721

4.3. NIST SP 800-22 sts-2.1.2 randomness test result for an RNG dataset from an IDQ6MC1 chip

IDQ6MC1 chips are using the NIST approved DRBG mechanisms and thus the RNG output datasets always have good randomness and pass all randomness test. In default setting, the test suite consists of 188 testers (including sub-testers) which have small failure probability according to the significance level. However, since there are many testers, we can see often one or two failures on the final test report with probability of around 30%. This failure rate looks high but is expected from a properly functioning RNG. The following is a part of the test result.

1227 Carouge/Geneva Switzerland

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES													
generator is													
C1	C2	C3	C4	C5	C6	С7	C8	C9	C10	P-VALUE	PROPORTION	S	TATISTICAL TEST
27	25	17	20	18	19	26	15	16	17	0.465415	200/200		Frequency
21	20	20	20	28	20	18	22	13	18	0.709558	199/200		BlockFrequency
27	25	20	20	14	19	22	16	23	14	0.455937	199/200		CumulativeSums
25	26	16	24	15	18	18	20	22	16	0.605916	199/200		CumulativeSums
15	12	15	22	27	28	27	16	19	19	0.093720	199/200		Runs
13	27	22	21	17	21	18	16	26	19	0.484646	198/200		LongestRun
18	20	20	15	32	21	19	20	17	18	0.401199	199/200		Rank
21	24	20	21	23	18	22	15	17	19	0.941144	199/200		FFT
24	21	16	23	22	16	15	23	19	21	0.842937	199/200		NonOverlappingTemplate
18	14	19	26	20	21	18	23	20	21	0.867692	199/200		NonOverlappingTemplate
26	16	25	18	21	18	18	20	24	14	0.626709	199/200		NonOverlappingTemplate
17	17	19	20	30	15	19	24	17	22	0.465415	198/200		NonOverlappingTemplate
25	16	15	20	23	20	14	27	15	25	0.311542	199/200		NonOverlappingTemplate
13	18	14	19	22	25	22	23	17	27	0.392456	200/200		NonOverlappingTemplate
23	21	19	25	11	18	22	22	20	19	0.689019	196/200		NonOverlappingTemplate
24	21	16	22	23	16	15	23	19	21	0.842937	199/200		NonOverlappingTemplate
25	29	23	13	22	18	22	8	17	23	0.050305	192/200	*	NonOverlappingTemplate
19	27	25	17	14	20	26	17	20	15	0.392456	200/200		NonOverlappingTemplate
20	15	21	22	28	19	18	21	20	16	0.759756	194/200		NonOverlappingTemplate
10	22	26	10	10		2.2	~	22	2.2	0 000007	1001000		
The	mini	mum	pass	rat	e fo	г еа	ich s	tati	stic	al test wi	th the exce	pt	ion of the
rand	om e	xcur	sion	(va	rian	t) t	est	is a	DDLO	ximately =	: 193 for a		
samo	le s	ize	= 20	0 bi	narv	sec	uenc	es.					
The minimum pass rate for the random excursion (variant) test													
is approximately = 125 for a sample size = 130 binary sequences.													
For	For further guidelines construct a probability table using the MAPLE program												
ргоу	ided	in	the	adde	ndum	sec	tion	of	the	documentat	ion.		
-	fortue the addendam section of the documentation.												

4.4. Dieharder v.3.31.1 randomness test result for an RNG dataset from an IDQ6MC1 chip

The Dieharder test requires to run with a random bit file of at least 12GB to avoid the rewinding issue. It provides three types of results, pass, fail and weak according to the p-value. When a certain tester gets 'weak' result, it is possible to run it again until it gets either 'pass' or 'fail' result. The following is a part of result.

1227 Carouge/Geneva Switzerland

#======================================						=================#
# diehard	er ver	sion 3.31.:	1 Copyrig	ht 2003 Rob	ert G. Brown	#
#=====================================		filename		rands/s	======================================	
file_input_raw		S2Q400-I	RNG-10GB.	bin 6.04e	+07	
#======================================	======			===========		========#
test_name	ntup	tsamples	psamples	p-value	Assessment	
#======================================	======	===========		===================	======================================	=======#
diehard_birthdays	0	100	100	0.84201435	PASSED	
diehard_operm5	0	1000000	100	0.25297365	PASSED	
diehard_rank_32x32	0	40000	100	0.85299503	PASSED	
diehard_rank_6x8	0	100000	100	0.79093749	PASSED	
diehard_bitstream	0	2097152	100	0.15476560	PASSED	
diehard_opso	0	2097152	100	0.76642259	PASSED	
diehard_oqso	0	2097152	100	0.70893143	PASSED	
diehard_dna	0	2097152	100	0.99940527	WEAK	
diehard_dna	0	2097152	200	0.75671137	PASSED	
diehard_count_1s_str	0	256000	100	0.69194048	PASSED	
diehard_count_1s_byt	0	256000	100	0.33650383	PASSED	
diehard_parking_lot	0	12000	100	0.64976124	PASSED	
diehard_2dsphere	2	8000	100	0.85608105	PASSED	
diehard_3dsphere	3	4000	100	0.20895372	PASSED	
diehard_squeeze	0	100000	100	0.10212708	PASSED	
diehard_sums	0	100	100	0.06647441	PASSED	
diehard_runs	0	100000	100	0.17470352	PASSED	
diehard_runs	0	100000	100	0.31026173	PASSED	
diehard_craps	0	200000	100	0.60040260	PASSED	
diehard_craps	0	200000	100	0.96785949	PASSED	
marsaglia_tsang_gcd	0	10000000	100	0.34696504	PASSED	
marsaglia_tsang_gcd	0	10000000	100	0.97517953	PASSED	
rgb lagged sum	27	1000000	100	0.73897942	PASSED	
rgb lagged sum	28	1000000	100	0.90274042	PASSED	
rgb lagged sum	29	1000000	100	0.51067478	PASSED	
rgb lagged sum	30	1000000	100	0.28031247	PASSED	
rgb lagged sum	31	1000000	100	0.29051266	PASSED	
rgb lagged sum	32	1000000	100	0.74029673	PASSED	
rgb kstest test	I øl	10000	1000	0.56797391	PASSED	
dab bvtedistrib	0	51200000	1	0.25123374	PASSED	
dab dct	256	50000	1	0.17611116	PASSED	
Preparing to run test	207.	ntuple =	0			
dab filltree	32	15000000	1	0.95819161	PASSED	
dab filltree	32	15000000	1	0.82049568	PASSED	
Preparing to run test	208	ntuple =	0 -			
dab filltree?	0	5000000	1	0.84534061	PASSED	
dab filltree2	1	5000000	1	0.13153858	PASSED	
Preparing to run test	209	ntuple =	0 -			
dab monobit2	12	65000000	-	0.59847777	PASSED	

1227 Carouge/Geneva Switzerland

rgb_lagged_sum	27	1000000	100 0.73897942	PASSED
rgb_lagged_sum	28	1000000	100 0.90274042	PASSED
rgb_lagged_sum	29	1000000	100 0.51067478	PASSED
rgb_lagged_sum	30	1000000	100 0.28031247	PASSED
rgb_lagged_sum	31	1000000	100 <u>0.29051266</u>	PASSED
rgb_lagged_sum	32	1000000	100 0.74029673	PASSED
rgb_kstest_test	0	10000	1000 0.56797391	PASSED
dab_bytedistrib	0	51200000	1 0.25123374	PASSED
dab_dct	256	50000	1 0.17611116	PASSED
Preparing to run test	207.	ntuple = 0		
dab_filltree	32	15000000	1 0.95819161	PASSED
dab_filltree	32	15000000	1 0.82049568	PASSED
Preparing to run test	208.	ntuple = 0		
dab_filltree2	0	5000000	1 0.84534061	PASSED
dab_filltree2	1	5000000	1 0.13153858	PASSED
Preparing to run test	209.	ntuple = 0		
dab_monobit2	12	65000000	1 0.59847777	PASSED

5. Conclusion

In this document, we show how much good entropy IDQ QRNG chips can provide, based on physical and mathematical modelling. According to the simple characteristics of our quantum entropy source, the entropy quality is easy-to-understand, easy-to-control, and easy-to-maintain. IDQ QRNG chips successfully passes the IID test suite of NIST SP 800-90B entropy test suite. The min-entropy score obtained in both the IID and non-IID test suites have been shown to reach the maximal values attainable with these tests. Interestingly, these maximal values are obtained on the quantum entropy data, i.e. without using any randomness extractor (DRBG). Moreover, the random bit strings obtained after the DRBG successfully passes all the randomness tests, for example, the NIST SP800-22 sts-2.1.2 and the Dieharder v.3.31.1. The randomness extractor is the Hash-based DRBG mechanism, which is well designed to get high quality randomness, approved by the NIST SP 800-90A and operated by the oversampling-NRBG (Non-deterministic Random Bit Generator) construction of the NIST SP 800-90C.

1227 Carouge/Geneva Switzerland