

SWISS QUANTUM

Redefining Measurement ID800/801 Time-to-Digital Converter

8 Channel Time to Digital Converter

DQ's ID800/ID801-TDC is an 8-channel time-todigital converter, coincidence counter, and time interval analyzer. This system is used to transfer the time-tags of registered events with picosecond precision and at high rates to a PC. Additionally, it can count single and multiple channel coincident events at even higher rates internally and report the totals to a PC.

The ID800/ID801-TDC registers incoming signal events on 8 independent channels, records their exact time (bin size 81 ps) and channel number and broadcasts these to a PC. A graphical user interface is supplied for Windows[®], software examples are available for C and Labview[™].

There are four ways of interfacing:

- Graphical User Interface Software
- Command Line Interface
- LabView sub-VIs and sample program
- C user libraries

Key Features

- ▶ High event count rates up to 15 million events/second
- Data transfer up to 5 million events per second
- Clock divider for synchronisation up to 100MHz
- NIM TTL LVTTL and variable inputs
- 8 channels
- Easy to use control software
- High timing resolution with bin size as low as 81ps
- Integrated coincidence counter
- Minimal time between two consecutive counts in the same channel is 5.5ns

The difference between the ID800 and ID801 is in the input conditioning: the ID800 accepts LVTTL or TTL signals, while the ID801 adds programmable input discriminators (-2V and 3V, 1.22mV step). The ID801 also features a clock divider on channel 1, which allows it to be synchronized to high repetition-rate lasers up to 100 MHz.

Applications

- Time correlated single photon counting (TCSPC)
- Fluorescence lifetime imaging
- ▶ High energy physics
- Fluorescence correlation spectroscopy
- Single photon counting
- Quantum cryptography
- Precision time measurement
- LIDAR
- Correlation measurement
- Quantum optics
- Optical measurements

ID QUANTIQUE SA Rue Eugène-Marziano 25

1227 Geneva Switzerland T +41 22 301 83 71 F +41 22 301 83 79 info@idquantique.com www.idquantique.com

TIME-TO-DIGITAL CONVERTER

Principle of Operation

The ID801 contains an ASIC which time-tags events on 8 input channels and multiplexes them together. An FPGA takes these tags, sorts and compresses them for output. The FPGA also counts coincidences between channels, allowing accurate real-time reporting of coincidences at high signal rates.

Specifications

Parameter	ID800	ID801
Bin size, timing resolution	81 ps	81 ps
Channels	8	8
Maximum Count Rate, Total	15 MHz	15 MHz
Data Transfer Rate	5 MHz	5 MHz
Input levels	LVTTL / TTL	-2V to +3V / NIM / LVTTL / TTL
Sync input divider	NO	8/16/32/64/128 up to 100MHz
Minimum Pulse Interval	5.5 ns	5.5 ns
Minimum Pulse Width	4 ns	4 ns
Maximum Count Rate per Channel	10 MHz	10 MHz
Input Connectors	BNC	BNC
PC Interface	USB 2.0	USB 2.0
Dimensions	W:25cm H:10cm D:30cm	W:25cm H:10cm D:30cm
Power supply	110 - 230 VAC	110 - 230 VAC

1227 Geneva Switzerland T +41 22 301 83 71 F +41 22 301 83 79

ID801

TIME-TO-DIGITAL CONVERTER

Indirect Measurement (Post-Processing)

File Edit Format View Help [\$5109963395141 , 1 1 1 [\$5109963407493 , 1 1 1 [\$5109963407493 , 0 1 1 [\$5109963407501 , 0 1 1 [\$5109963419845 , 1 1 1 [\$5109963469255 , 1 1 1 [\$5109963469253 , 0 1 1 [\$5109963481613 , 0 1 1 [\$5109963433766 , 1 1 1 [\$5109963543376 , 0 1 1 [\$5109963543376 , 0 1 1 [\$5109963543376 , 0 1 1 [\$5109963553727 , 0 1 1 [\$5109963617482 , 1 1 1 [\$5109963617482 , 1 1 1 [\$5109963629832 , 1 1 1 [\$5109963629842 , 0 1 1 [\$510
IS109963395141 , 1 1S109963407493 , 1 1S109963407493 , 1 1S109963419852 , 1 1S109963419852 , 1 1S109963449263 , 1 1S109963449263 , 1 1S109963469263 , 0 1S109963481613 , 0 1S109963483664 , 0 1S109963483663 , 0 1S109963483664 , 0 1S109963439365 , 0 1S109963543376 , 0 1S109963555717 , 0 1S109963558071 , 1 1S109963568079 , 0 1S109963617482 , 1 1S109963629832 , 1 1S109963647484 , 0 1S109963629832 , 1 1S109963629832 , 1
*

The supplied software can write time-tags to file, and from this file coincidences can be counted after detection.

Interfaces with the ID800/ID801

There are four provided ways of interfacing with the Id800/ID801:

- ▶ Graphical User Interface Software
- Command Line Interface
- LabView sub-VIs and sample program
- C user libraries

Application #1: Time Interval Analyzer

The ID800/ID801 is supplied with software for building histograms of time differences between time-tags. This is useful for analysing timing jitter or after-pulsing probabilities of detectors. For example, a function generator can be used to generate pulses from an ID300 short-pulse laser source, which are then attenuated and detected by an ID220 free-running single photon detection module. The time differences can be measured by the ID800/ID801, and investigated with the provided software. In this example, the start of the measurement is triggered with a pulse from the user. The ID800/ID801 can also perform continuous timing measurements without requiring an external trigger.

Direct Measurement

Using a supplied LabView program, real-time plots of singles and coincidence rates can be generated, useful for real-time experiment optimization. Histograms and raw time-tags can also be displayed.

ID801

TIME-TO-DIGITAL CONVERTER

Application #2: Heralded Single-Photon Source

A single photon source can be made and tested using ID Quantique instrumentation: one starts with the ID350 PPLN producing correlated photon pairs. These are split either on a 50/50 beamsplitter or WDM. One photon from the pair is detected on the free-running ID220, thus heralding the other single photon. The ID220 triggers the ID210 to detect the heralded single photon. The perfect time correlation can be verified with the ID801 time-to-digital converter.

Disclaimer - The information and specification set forth in this document are subject to change at any time by ID Quantique without prior notice. Copyright© 2023 ID Quantique SA - All rights reserved - G.192.0134-PB-1.0 - Specifications as of September 2023

ID QUANTIQUE SA

Rue Eugène-Marziano 25

1227 Geneva Switzerland T +41 22 301 83 71 F +41 22 301 83 79 info@idquantique.com www.idquantique.com